If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-120x+125=0
a = 5; b = -120; c = +125;
Δ = b2-4ac
Δ = -1202-4·5·125
Δ = 11900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{11900}=\sqrt{100*119}=\sqrt{100}*\sqrt{119}=10\sqrt{119}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-120)-10\sqrt{119}}{2*5}=\frac{120-10\sqrt{119}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-120)+10\sqrt{119}}{2*5}=\frac{120+10\sqrt{119}}{10} $
| 2*(2x-1)=2x+13 | | -6p-16=-2(5+3) | | 9x=1=10 | | 2x/3x+144=8/15 | | (c/2)-4.3=11.5 | | -6p-16=-2(5+3p | | 4z+19=11 | | .5*4*6+6*x=x | | 9c÷10=9÷5 | | 12x+14=6x+4 | | 4x+10-4x=5x+5-4x | | 2(3x+9)=-35+41 | | 6z^2+7z+1=0 | | 16-6n=-4n-2(n-8) | | 17=5k-5-3 | | 3/4k+12=0 | | 3*(x-6)=2*(æ-7) | | -4(x+3)+5x=x-12 | | 3x+(-4x)=-x | | 4/7x=-3/5x+1/35 | | -12x-63=15 | | 3n-2n=100 | | 47x=−35x+13547x=-35x+135 | | 0.25=0.6-2x/0.6+x | | 5(1+4v)=-37+6v | | X(x-25)=150 | | 6(2x-10)=-2(x-4) | | 40=13+5x-3 | | -9(t-2)=-4(t-15) | | 7x+18=98-3x | | 4x+3(x+12)=99 | | 2x+10x-528=0 |